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MRI deep learning models for assisted
diagnosis of knee pathologies:
a systematic review
Keiley Mead1* , Tom Cross2, Greg Roger3,4, Rohan Sabharwal5, Sahaj Singh5 and Nicola Giannotti1

Abstract

Objectives Despite showing encouraging outcomes, the precision of deep learning (DL) models using different
convolutional neural networks (CNNs) for diagnosis remains under investigation. This systematic review aims to
summarise the status of DL MRI models developed for assisting the diagnosis of a variety of knee abnormalities.

Materials and methods Five databases were systematically searched, employing predefined terms such as ‘Knee
AND 3D AND MRI AND DL’. Selected inclusion criteria were used to screen publications by title, abstract, and full text.
The synthesis of results was performed by two independent reviewers.

Results Fifty-four articles were included. The studies focused on anterior cruciate ligament injuries (n= 19, 36%),
osteoarthritis (n= 9, 17%), meniscal injuries (n= 13, 24%), abnormal knee appearance (n= 11, 20%), and other (n= 2,
4%). The DL models in this review primarily used the following CNNs: ResNet (n= 11, 21%), VGG (n= 6, 11%),
DenseNet (n= 4, 8%), and DarkNet (n= 3, 6%). DL models showed high-performance metrics compared to ground
truth. DL models for the detection of a specific injury outperformed those by up to 4.5% for general abnormality
detection.

Conclusion Despite the varied study designs used among the reviewed articles, DL models showed promising
outcomes in the assisted detection of selected knee pathologies by MRI. This review underscores the importance of
validating these models with larger MRI datasets to close the existing gap between current DL model performance
and clinical requirements.

Key Points
Question What is the status of DL model availability for knee pathology detection in MRI and their clinical potential?
Findings Pathology-specific DL models reported higher accuracy compared to DL models for the detection of general
abnormalities of the knee. DL model performance was mainly influenced by the quantity and diversity of data available for
model training.
Clinical relevance These findings should encourage future developments to improve patient care, support personalised
diagnosis and treatment, optimise costs, and advance artificial intelligence-based medical imaging practices.

Keywords Knee, Artificial intelligence, Magnetic resonance imaging, Deep learning, Three-dimensional
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Graphical Abstract

Introduction
Knee injuries are a prevalent health concern globally,
affecting both paediatric and adult populations [1]. Cur-
rent diagnosis involves clinical examination followed by
imaging such as X-ray and magnetic resonance imaging
(MRI) [2]. MRI is crucial in diagnosing knee injuries due
to its superior soft tissue contrast resolution [3]. In-plane
two-dimensional (2D) MRI knee studies are typically
acquired in three orthogonal planes using a combination
of sequences. While 2D knee MRI is useful for assessing
various conditions, its limitations include restricted spa-
tial resolution, partial volume effect (PVE), and geome-
trical constraints that may limit a thorough interrogation
of selected small features of knee injuries [4]. Additionally,
2D MRI does not allow image reconstruction onto arbi-
trary anatomical planes [5].
Advanced MRI sequences like three-dimensional (3D)

MRI can gather larger data sets offering additional
information compared to 2D MRI [6]. 3D MRI sequences
capture data volumes with higher spatial resolution and
reduced PVE [7]. Moreover, it enables image recon-
struction on arbitrary diagnostic planes. Despite the
radiologist’s preference for multi-sequence 2D MRI due
to their enhanced contrast-to-noise ratio (CNR), the tra-
ditional limitations of 3D MRI including longer scan

times are now mitigated through high magnetic field
scanners [8] and compressed sensing techniques that
expedite scan time [9]. Furthermore, the recent applica-
tion of deep-learning (DL) denoising algorithms into 3D
MRI sequences has promised to deliver excellent
improvements in CNR.
Interpreting knee MRI images requires significant

experience [10]. While proficient radiologists exhibit good
diagnostic accuracy in knee MRI exams, attaining such
expertise demands rigorous training [11]. Artificial intel-
ligence (AI) has recently emerged as a transformative
force in the field of medical imaging [12]. DL, a sub-field
of AI, is capable of leveraging advanced image pattern
recognition capabilities to detect abnormalities and has
the potential to revolutionise the way we approach MRI
analysis and the classification of injuries and diseases [13].
Today, a growing number of DL models for radiology
applications are being developed using different con-
volutional neural network (CNN) infrastructures, training
and validation techniques.
In the context of knee MRI, recent studies have

demonstrated the feasibility of training DL models with
MRI data to help clinicians with limited expertise in
assessing knee injuries [14]. Nevertheless, the precision of
DL models for diagnosis remains under investigation.
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This systematic review aims to summarise the status of
the DL MRI models developed for the classification and
assisted diagnosis of common knee injuries and diseases.

Materials and methods
Protocol
Ethics approval was deemed unnecessary by the Research
Integrity and Ethics Committee at the University of Sydney.
A retrospective systematic review was conducted following
protocols outlined in The Joanna Briggs Institutes’ Manual
for Evidence Synthesis [15]. The manuscript structure
adhered to the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) checklist [16]. Arti-
cles were independently screened by title, abstract and full
text by the two independent reviewers.

Search strategy
We searched five online databases (SCOPUS, Pubmed,
Web of Science, Science Direct, and Cochrane) from
January 1, 2013, to May 12th 2024, using English terms:
(magnetic resonance OR magnetic resonance imaging OR
MRI OR MR) AND (knee) AND (deep learning OR DL)
AND (3D) (see Appendix A).

Inclusion and exclusion criteria
Articles published in the last eleven years between 2013
and 2024, in English, and peer-reviewed involving adult
human participants were included if they discussed DL
models assessing pathology in knee MRI images. Exclu-
sions comprised studies unrelated to knee MRI, focusing
on modalities other than MRI, or solely on DL segmen-
tation without injury classification and diagnosis. Review
papers were excluded. Articles that did not focus on the
detection of pathologies, such as only segmenting knee
structures, were excluded. Object detection in MRI stu-
dies such as the localisation of structures by AI models,
volumetric anatomy calculations, grading and severity
staging, pathology differentiation, and progression pre-
dictions were not included in pathologies as this study is
focussed solely on the detection of knee pathologies and
injuries. Studies that focussed on non-human or paedia-
tric populations were also excluded.

Data screening
The covidence platform facilitated duplicate removal, while
both reviewers independently screened titles and abstracts
of the 1884 publications. Full-text review discussions
resolved discrepancies between the two reviewers, ensuring
consensus on study selection and data extraction.

Extraction
The data extraction method utilised a closed-question
format established pre-study with a custom-built data

extraction template (see Appendix B). Two reviewers
independently charted data in Covidence using the tem-
plate. Disagreements were resolved through discussions,
updating the form iteratively to accommodate study
variations.

Synthesis of results
The results obtained from Covidence were downloaded
and standardised to ensure consistency in reporting
metrics. For studies that provided ranges or multiple sets
of data, such as separate performance metrics for 2D and
3D MRI DL models or different versions of the same
model, the highest-performing model was selected for
analysis. Consequently, to evaluate the performance of DL
models, this study conducted several subgroup analyses,
including comparisons based on the type of MRI scans
used, pathology-specific performance, type of CNNs used,
internal versus external datasets, the impact of transfer
learning, and the types of ground truths used, categorised
by pathology. For each subgroup, performance metrics
such as sensitivity, specificity, area under the receiver
operating characteristic curve (AUC-ROC), and accuracy
were extracted when available and then averaged across
the studies to identify trends. Specifically, this study cal-
culated the mean values for sensitivity, specificity, AUC-
ROC, and accuracy for each subgroup.

Results
The initial online search performed on the 12th of May
2024 yielded 1884 articles excluding duplicates. A total of
54 articles fulfilled the inclusion criteria and progressed to
full-text analysis (Fig. 1). A descriptive summary of
reported results was presented in data charting tables (see
Appendix C).

General study information, pathology, and article data
sources
Among 54 studies analysed, 94% (n= 51) [14, 17–66] were
retrospective cohort studies while comparative analyses
made up 4% (n= 2) [67, 68] and diagnostic test accuracy
studies made up 2% (n= 1) [69] of the selected studies.
Anterior cruciate ligament (ACL) injuries were the focus of
35% (n= 19) of articles [14, 19, 24, 32, 34, 35, 37, 42, 45,
47, 48, 52, 53, 57, 58, 62, 64, 65], followed by meniscal
pathologies in 24% (n= 13) [20, 22, 27, 28, 33, 40, 41,
46, 55, 56, 59, 61, 70], general abnormalities in 20% (n= 11)
[23, 26, 30, 31, 39, 43, 54, 60, 66–68], and osteoarthritis (OA)
or cartilage pathologies in 17% (n= 9) [17, 18, 21, 25, 36,
38, 48, 50, 51]. Synovial fluid detection (n= 1, 2%) [29], and
tibial fractures (n= 1, 2%) [44] were less frequent. More than
half of the studies (n= 29, 54%) used local or private data-
bases [19, 22–24, 27, 29, 32–36,40–42, 44, 48–52, 55,
58, 59, 61–66], while the rest employed open-access
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Fig. 1 PRISMA flow diagram showcasing the selection of evidence for the systematic review ‘DL models available for assisted detection of knee
pathologies in MRI’
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databases like MRNet (n= 9, 17%) [31, 43, 45, 46, 53, 54, 57,
67, 68] and the dataset (n= 6, 11%) [17, 18, 20, 21, 25, 56],
which reported almost identical performance regardless of
where the data was sourced from in performance metrics
including sensitivity, specificity, AUC-ROC and accuracy.

MRI data
In the systematic review of 54 studies, MRI scanner spe-
cifications varied widely. Twenty-one studies (39%) did
not specify the scanner used [14, 17, 24–27, 29–31,
37, 38, 43–46, 48, 49, 53, 54, 68, 69], while 19 (35%)
employed 3-Tesla (3-T) machines [18–23, 28, 34,
36, 39–41, 47, 50, 51, 56, 60–62] (Table 1). Seven studies
(13%) utilised both 1.5-Tesla (1.5-T) and 3-T machines
[35, 42, 52, 57–59, 67], five (9%) used 1.5-T machines
[32, 33, 63, 64, 66], and two (4%) employed 1-Tesla (1-T),
1.5-T, and 3-T machines [55, 65] (Table 2). Thirty-one
studies (57%) utilised 2D MRI [19, 22–24, 27,
29, 30, 32–37, 40–42, 45, 47, 48, 50, 52, 55, 57–59, 61,
63–67], while eight (15%) employed 3D MRI [17, 18,
20, 21, 28, 39, 60, 62]. Three studies (6%) used both 2D

and 3D MRI [25, 51, 56], and twelve studies (22%) did not
specify the type of MRI data used [14, 26, 31, 38, 43,
44, 46, 49, 53, 54, 68, 69]. MRI sequences varied greatly,
with sagittal images alone used in twenty-one studies
(39%) [17–21, 23, 27, 34, 36–38,41, 45, 48, 50, 52, 53, 61,
63, 64, 69], 3D volumes in seven studies (13%) [14, 28,
39, 51, 58, 60, 62], and combinations of sagittal, coronal,
and axial images in eleven studies (20%) [24, 26, 30, 31,
43, 46, 49, 54, 57, 66, 67]. Eight studies (15%) used sagittal
and coronal images together [25, 29, 33, 40, 42, 55, 59, 65].

CNN architecture and data processing
ResNet was the primary CNN architecture used in 11
studies (19%) [18, 19, 22, 31, 35, 41, 56, 61, 64, 68, 69],
followed by VGG in 6 studies (11%) [32, 36, 38, 43, 54, 67],
DenseNet in four studies (8%) [17, 34, 49, 58], DarkNet in
three studies (6%) [40, 53, 63]. Sixteen studies (30%) did
not enlist an existing CNN architecture and created a
customised DL model [21, 23, 24, 27, 28, 31, 37, 39,
42, 44, 45, 47, 55, 59, 67]. Data augmentation was utilised
in 26 studies (48%) [17, 19, 20, 22, 23, 25, 27, 29–32,

Table 1 An overview of the number of studies including in the systematic review that utilised various MRI machine characteristics
including the magnet strength, data type, and plane utilised for image analysis with DL models

MRI machine

characteristics

Sub-set of data Number of studies included in the

review with this sub-set of data,

(n= )

Percentage of overall studies included in

the review with this sub-set of data, (%)

MRI machine magnet

strength

1.5 T only 4 8%

3 T only 19 36%

Combination of 1.5 T and 3 T 7 13%

Combination of 1 T, 1.5 T and

3 T

2 4%

Not Listed 21 40%

MRI data type 2D only 30 57%

3D only 8 15%

Combination of 2D and 3D 3 6%

Not listed 12 23%

MRI plane utilised in image

analysis

Sagittal only 21 40%

Coronal only 2 4%

Axial only 0 0%

Oblique sagittal only 1 2%

3D sequence only 7 13%

Combination of coronal and

sagittal

8 15%

Combination of sagittal, axial

and coronal

10 19%

Combination of sagittal, and

3D

1 2%

Combination of sagittal,

coronal, axial and 3D

1 2%

Not listed 2 4%
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39, 41, 43, 47, 50, 52, 53, 56, 58, 60, 62, 64, 66–68],
23 studies did not report whether data augmentation was
used (43%) [14, 18, 21, 28, 33–38, 40, 42, 44, 48, 49,
51, 54, 57, 59, 61, 63, 65, 69] and five studies did not use
data augmentation (9%) [24, 26, 45, 46, 55] (Table 1). The
details of the several data augmentation methods are
available in Appendix C along with the details of the
datasets used. Thirty-nine studies (72%) conducted a
validation process of their DL models against previously
unseen data [17, 18, 21–24, 27–31, 34–42, 46, 47,
50, 52, 53, 55–62,64–67, 69, 70]. Of these, thirty-two used
internal validation data (82%) [17, 18, 21–23, 28–31,
34–39, 42, 46, 47, 50, 52, 53, 56–59, 61, 62, 64–66, 69, 70],
four used both internal and external validation data (10%)
[40, 41, 55, 67], and three used external data only (8%)
[24, 27, 60] (Table 3). Transfer learning was utilised in
eighteen of the studies (33%) [17–19, 22, 26, 29, 30,
35, 38, 46, 48, 53, 54, 57, 62, 66, 68, 69] included from pre-
existing datasets such as ImageNet, and we found that the
performance metrics of DL models that used transfer
learning reported specificity, AUC-ROC, accuracy and
sensitivity of 0.896, 0.916, 0.871, and 0.925, respectively
compared to no transfer learning use 0.903, 0.922, 0.889,
and 0.875, respectively (see Appendix D).

Performance outcomes and ground truth references
Ground truth for knee pathologies in the studies analysed
included training labels, reports, or annotations (n= 20,
37%) [18–21, 27, 30, 31, 37, 38, 41, 43, 46, 49, 57,
63–65, 67–69], radiologist or clinician opinion (n= 15,
28%) [14, 23, 28, 29, 32, 35, 36, 39, 50, 52, 53, 55,
60, 62, 66], arthroscopic or surgical findings (n= 6, 11%)
[34, 40, 44, 51, 58, 59], or a combination of physician
opinion with arthroscopic or surgical findings, or training
labels, reports or annotations (n= 3, 6%) [22, 42, 59]. Ten
studies did not list their ground truth (19%)
[17, 24–26, 33, 45, 47, 48, 54, 56] (Fig. 2). The articles that
did not list a ground truth reported higher performance
metrics compared to articles that utilised a ground truth
or reference standard including sensitivity, specificity,
AUC-ROC and accuracy (see Appendix E).
DL model performance outcomes were averaged across

knee pathologies for sensitivity, specificity, AUC-ROC,
and classification accuracy, reporting 88.65%, 90.12%,
92.05%, and 88.30%, respectively. Specific knee abnorm-
ality training improved outcomes, with average specificity,
AUC-ROC, accuracy, and sensitivity of 90.57%, 92.72%,
88.91%, and 88.67%, respectively. General abnormalities
MRI studies showed averages of 86.51%, 89.80%, 84.48%,

Table 3 The average values for four selected performance metrics (specificity, AUC-ROC, accuracy, and sensitivity) were recorded for
each type of validation across all studies

Type of validation Average specificity value Average AUC-ROC value Average accuracy value Average sensitivity value

Internal (n= 31) 0.899 0.924 0.880 0.880

External (n= 3) 0.890 0.926 Not measured 0.850

Both internal and external (n= 4) 0.897 0.914 0.885 0.842

Not listed (n= 15) 0.933 0.905 0.886 0.939

Note that if the performance metric was not listed, it was not included in the average

Table 2 An overview of the number of studies including in the systematic review that utilised various data augmentation methods to
expand their dataset of MR images of the knee for DL model analysis

Data augmentation use Sub-set of data Number of studies included in the

review with this sub-set of data,

(n= )

Percentage of overall studies included

in the review with this sub-set of data,

(%)

Studies reviewed that used data

augmentation

Single technique* 2 4%

Combination of

techniques*

22 42%

Unspecified

technique(s)

1 2%

Studies reviewed that did not use data

augmentation

N/A 5 9%

Studies reviewed that did not specify if

data augmentation was used

N/A 23 43%

* For a complete list of data augmentation techniques, please refer to Appendix C
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Fig. 2 Graphical depiction of the occurrence of various ground truth or reference standards representative of the articles analysed in the review
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and 88.48%, respectively, highlighting specialised model
benefits of up to 4.5% (Table 4). 2D MRI data yielded
higher model performance averages: specificity, accuracy,
and sensitivity of 0.904, 0.898, and 0.892, compared to 3D
MRI data at 0.881, 0.852 and 0.870. However, the AUC-
ROC performances for combined 2D and 3D MRI data-
based models averaged 0.934, compared to 0.931 and
0.871 for 2D data alone and 3D data alone, respectively.
No DL models gained regulatory approval.

Discussion
Datasets
This systematic review highlights the reliance on large
datasets for developing DL models, primarily from retro-
spective cohort studies. Today, imaging facilities and
healthcare services are under a significant workload andmay
lack the logistical capacity, time, and resources to undertake
prospective MRI studies aimed explicitly at DL model
development. Consequently, 94% of the studies analysed
utilised existing data. Of the currently available open-source
datasets, the MRNet database featured prominently,
appearing in approximately 17% of the studies, offering
diverse DL model performance outcomes. Extending open-
source MRI datasets holds profound significance in advan-
cing the development of DL models for assisted diagnosis in
healthcare. These datasets serve as invaluable resources for
researchers, clinicians, and developers worldwide, enabling
them to access diverse and comprehensive collections of
medical images crucial for training and validating DL algo-
rithms. Furthermore, increased accessibility to diverse MRI
datasets encourages collaboration and innovation across the
medical imaging community, facilitating the exploration of
novel methodologies and techniques for improved diag-
nostic accuracy and patient care.
Despite some DL models exhibiting versatility in

detecting various knee pathologies and general abnorm-
alities, the DL models tailored for a specific task—ACL
injury detection for instance—demonstrate superior

performance compared to those designed for broader
abnormality detection. Recent advances in DL technology
have now enabled the use of transfer learning in the
context of medical imaging. Transfer learning allows the
knowledge acquired from one specialised task, such as
ACL injury detection, to be leveraged and transferred to
additional related tasks. In this case, DL models initially
trained to excel in identifying a particular knee pathology
could serve as valuable foundations for the development
of a more comprehensive knee injury detection multi-
model structure capable of assessing with high accuracy a
large range of diseases.

MRI
The variability in the datasets due to the use of different
MRI techniques presents a significant challenge for the
clinical deployment of DL models. This issue is particu-
larly pronounced due to the varying image quality that
results from differences in MRI scanner field strengths.
Studies have shown that 3-T MRI scanners provide
superior image quality, especially for OA and ACL ima-
ging [70], nonetheless, the utilisation of diverse MRI
protocols further complicates the matter. A standard MRI
examination of the knee typically involves the acquisition
of a range of sequences in three orthogonal imaging
planes. Despite this, the specific protocol may vary sig-
nificantly based on patient indications and site-specific
factors. For example, indications of ACL injury on MRI
requests may prompt the inclusion of thin and ultra-thin
oblique sagittal or coronal MRI, which is demonstrated to
enhance the diagnostic accuracy for ACL injuries [71, 72].
This diversity in imaging techniques hampers creating
universally effective DL models for real-world clinical use.
Standardising imaging techniques or training models with
more diverse real-world data could improve DL model
deployment. In the studies analysed, the MRI sequences
acquired in the sagittal plane were the most used to train
DL models. This is most likely due to its ability to see the

Table 4 The average values for four selected performance metrics (specificity, AUC-ROC, accuracy and sensitivity) recorded for each
knee injury of pathology across all studies

Performance

Factor

Sub-Set of Data Average Specificity

Value

Average AUC-ROC

Value

Average Accuracy

Value

Average Sensitivity

Value

Pathology Focus ACL Injuries (n = 19) 0.937 0.960 0.911 0.932

Meniscal Injuries (n = 13) 0.869 0.893 0.863 0.809

General Abnormalities (n = 10) 0.865 0.893 0.845 0.868

Osteoarthritis or Cartilage

Pathologies (n = 9)

0.887 0.924 0.883 0.874

Synovial Fluid Detection (n = 1) 0.821 Not measured 0.868 0.893

Tibial Fractures (n = 1) 0.932 Not measured 0.953 0.969

Note that if the performance metric was not listed, it was not included in the average
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ACL in its entirety compared to other imaging planes
[73], and it should be noted that the ACL injury was the
most relevant pathology in the studies included in our
review. We believe that the preference for 2D MRI over
3D MRI data in DL model development may be due to
their acceptance in standard MRI protocols and avail-
ability in repositories like MRNet, however, for indica-
tions such as ACL injuries, the ability to interrogate the
“rupture zone” in high resolution on patient’s acute and
follow-up MRI examinations for ACL-related pathologies
is essential for treatment planning with emerging treat-
ments such as the cross bracing protocol [74]. Future
research should explore the potential impact of 3D MRI
data on diagnostic accuracy and DL model performance
as 3D MRI gains acceptance in medical imaging clinics.

DL model development
DL models require large amounts of data to achieve a high
level of accuracy for disease classification and therapeutic
management prediction purposes [75]. In the absence of
large dataset availability, data augmentation is a method
often employed in AI studies to increase the available data
[61]. In the studies analysed, 48% of studies stated that
data augmentation was used. Data augmentation methods
increased models’ performance by increasing the number
of images for DL model training. One study reported an
AUC-ROC of 0.905 [31], whereas a 2021 study utilising
similar CNN (ResNet) and database (MRNet) reported an
AUC-ROC of 0.8196 [46], with the primary difference
between the two studies being the utilisation of data
augmentation. The use of data augmentation to increase
the available data was able to aid in improving perfor-
mance outcomes, suggesting that the performance of
models is often dependent on the quantity of data avail-
able for training, testing and validation purposes.
The main CNN used was ResNet in 19% of studies,

however, a wide variety of different architectures were
used for the models in the articles analysed. The type of
CNN used can affect the performance of the DL model. In
2022 study that utilised the MRNet dataset opted to use
the CNN, ‘Inception-v3’ and reported performance out-
comes of 0.9634, 0.9542, and 0.9513 for specificity,
accuracy and sensitivity, respectively [57]. A similar study
conducted in 2021 that used the same MRNet dataset but
utilised the ResNet50 CNN reported significantly lower
performance outcomes for specificity, accuracy, and sen-
sitivity [46]. Whilst transfer learning was utilised in some
studies, it did not significantly improve the performance
of these models, with models that did not use transfer
learning outperforming those that did in specificity, AUC-
ROC, and accuracy metrics. Future research is required to
determine if models that employed transfer learning were
impacted by the training of the model, or if the

performance of models is more dependent on the con-
struction of the DL model.
The 2D MRI models showed higher average specificity,

AUC-ROC, accuracy, and sensitivity compared to the 3D
MRI models. This suggests that model performance may
be influenced by the algorithm used and the abundance of
input data, as 2D MRI data are generally more prevalent
and thus may lead to better-trained models. When com-
paring DL models developed with 2D and 3D MRI data,
the results showed a higher individual data type AUC-
ROC compared to the combined data type accuracy that
appeared to improve. This discrepancy between AUC-
ROC and accuracy metrics may due caused by the dif-
ferences in how these metrics are calculated. Further-
more, we observed that the variability in ground truth
establishment across studies likely influences these dif-
ferences. The combined imaging data approach with
expert ground-truth annotation will provide a more
robust foundation for the validation of DL models suitable
for both data types.
The ground truth, used as a reference standard, assessed

knee pathologies in the studies analysed to benchmark DL
model performance against human performance. The
potential to conduct clinical testing of DL models is
supported by the recent encouraging findings that showed
high DL model accuracy compared to interpretations
made by expert clinicians. Outcome measures varied
across studies, depending on DL model aims and inclu-
sion/exclusion of segmentation aspects. Performance
metrics like sensitivity, specificity, AUC-ROC, precision,
and classification accuracy were averaged across knee
pathologies. Two-dimensional MRI data showed higher
average specificity, AUC-ROC, accuracy, and sensitivity
than those using 3D MRI suggesting that model perfor-
mance may be influenced by the algorithm and input data
abundance. The combined 2D and 3D data reported a
higher AUC-ROC compared to individual MRI data types,
potentially due to the AUC-ROC calculation’s con-
sideration of sensitivity and specificity unlike accuracy
calculations, and its comparable performance to 2D
MRI alone.
Notably, the lack of approval of any models included in

the studies utilised in the review by regulatory bodies such
as the Food and Drug Administration or international
counterparts, suggests there remain limitations to these
models that inhibit their clinical implementation. Despite
some studies showing high classification accuracy, the DL
models have not been clinically applied, raising concern
about their performance in a real-life setting. AI in the
healthcare setting comes with ethical, financial, and legal
implications that require a high level of consideration at
academic, clinical, industrial and government levels.
Whilst the potential of AI for clinical use continues to be
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debated by the medical community, especially regarding
concerns about the displacement of radiologists, the lack
of regulatory body approval hinders these models from
being deployed clinically. Prospective studies comparing
multiple DL model performance to radiologist perfor-
mance will be able to determine if DL models are best
utilised as an alternative to radiologists or as an assistive
tool. Ideally, current DL models can be trained with a
more robust dataset from varying vendors, magnet
strengths and sequences prior to future research deter-
mining if they are suitable for clinical deployment. Fur-
thermore, DL models have the potential to aid not only
radiologists but also other healthcare professionals
regardless of their radiology experience.

Limitations
The rapid development of AI in medical imaging means
newer articles may now exist. The primary challenge
found while reviewing articles was the inconsistency in
how the data was reported. In 2020, the Checklist for
Artificial Intelligence in Medical Imaging (CLAIM) was
developed, promoting “clear, transparent, and repro-
ducible scientific communication about the application of
AI to medical imaging” and becoming the clinical stan-
dard for “best practice” [60], however, the checklist has
now been amended to ensure wider adoption to solve the
problems initially reported [76]. Alternatively, to CLAIM,
checklists including STARD-AI (standards for reporting
of diagnostic accuracy study-AI), CONSORT-AI (con-
solidated standards of reporting trials-AI), SPIRIT-AI
(standard protocol items: recommendations for inter-
ventional trials-AI), FUTURE-AI (fairness universality
traceability usability robustness explainability-AI), MI-
CLAIM (minimum information about clinical artificial
intelligence modelling), MINIMAR (minimum informa-
tion for medical AI reporting), and RQS (radiomics
quality score) [77], remains available for use to provide
structure to projects. In lieu of the CLAIM checklist, or
other recommended checklists being applied consistently
across the 54 studies included in the review, the wide
variation of methodologies and aims of studies makes a
robust comparison of DL models challenging to conduct.
Due to the insufficiency in data reporting, the highest-
performing model tested was included to demonstrate the
potential and reality of AI performance to date with
optimal parameters despite testing multiple backbones
and models on various factors such as multiple or single
slices, and on one or more pathologies. Additionally,
many studies did not report on the loss functions or error
estimates when reporting on the accuracy of DL models
which we acknowledge as a limitation of this study.
Additionally, out of the included studies, 14 (26%) did not
provide details on their ground truths. Recognising the

potential for bias and the scepticism warranted in such
cases, we conducted an additional sub-analysis to examine
the impact of excluding these studies. Our findings indi-
cate that the studies without listed ground truths reported
higher performance metrics, including sensitivity, speci-
ficity, AUC-ROC, and accuracy, compared to those that
utilised a defined ground truth or reference standard. This
discrepancy suggests that the absence of a clearly defined
ground truth might lead to inflated performance claims,
either due to less rigorous validation methods or potential
biases in reporting. These findings underscore the
necessity for transparency and rigour in reporting ground
truths in DL studies. Without a reliable reference stan-
dard, the validity of the reported accuracy may be
questionable, and conclusions drawn from such studies
should be approached with caution. The higher perfor-
mance metrics in studies lacking ground truths may
reflect an overestimation of model capabilities, leading to
potential misguidance in clinical application. Despite
these challenges, articles with varying performance
information were included to provide a comprehensive
review of available models for assisting knee diagnosis
in MRI.
Based on up-to-date knowledge, only two other sys-

tematic reviews on DL models in MRI in knee pathologies
have been published [78, 79]. However, this study pro-
vides an overview of the models available and their
accuracy on a broad scale. This review’s novelty lies in its
inclusion of additional conditions, sub-group analyses
revealing new information, and consideration of 3D MRI
and how this can be applied to DL models.

Future directions
Whilst many studies that demonstrated high diagnostic
accuracy do not comment on potential reasons for their
lack of clinical deployment, an example of a common
factor was the need for additional validation or larger
testing datasets, such as in “future directions include
further algorithm development on expanded datasets for
comprehensive evaluation of sports-related musculoske-
letal pathologies” [35]. Currently, no DL models are
clinically deployed to aid in detecting knee abnormalities
on MRI. Future research should prioritise generating
abundant 2D and 3D MRI data tailored to specific
pathologies for transfer learning to develop versatile DL
models. Open-access data sharing will enhance data
availability, improving DL model performance through
better training and validation processes.

Conclusion
This systematic review highlights that the fine-tuning of
DL models specific to knee pathologies can be used to
improve model performance compared to general
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screening models. This progress should be further soli-
dified through the execution of more extensive validation
studies aimed at enhancing the overall DL models’ per-
formance, and a prospective study investigating if the DL
models investigated are suitable to be utilised as an
assistive tool in the clinical setting.
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